Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Syst Rev ; 12(1): 57, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2309128

ABSTRACT

BACKGROUND: Major depressive disorder causes a great burden on patients and societies. Venlafaxine and mirtazapine are commonly prescribed as second-line treatment for patients with major depressive disorder worldwide. Previous systematic reviews have concluded that venlafaxine and mirtazapine reduce depressive symptoms, but the effects seem small and may not be important to the average patient. Moreover, previous reviews have not systematically assessed the occurrence of adverse events. Therefore, we aim to investigate the risks of adverse events with venlafaxine or mirtazapine versus 'active placebo', placebo, or no intervention for adults with major depressive disorder in two separate systematic reviews. METHODS: This is a protocol for two systematic reviews with meta-analysis and Trial Sequential Analysis. The assessments of the effects of venlafaxine or mirtazapine will be reported in two separate reviews. The protocol is reported as recommended by Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols, risk of bias will be assessed with the Cochrane risk-of-bias tool version 2, clinical significance will be assessed using our eight-step procedure, and the certainty of the evidence will be assessed with the Grading of Recommendations Assessment, Development and Evaluation approach. We will search for published and unpublished trials in major medical databases and trial registers. Two review authors will independently screen the results from the literature searches, extract data, and assess risk of bias. We will include published or unpublished randomised clinical trial comparing venlafaxine or mirtazapine with 'active placebo', placebo, or no intervention for adults with major depressive disorder. The primary outcomes will be suicides or suicide attempts, serious adverse events, and non-serious adverse events. Exploratory outcomes will include depressive symptoms, quality of life, and individual adverse events. If feasible, we will assess the intervention effects using random-effects and fixed-effect meta-analyses. DISCUSSION: Venlafaxine and mirtazapine are frequently used as second-line treatment of major depressive disorder worldwide. There is a need for a thorough systematic review to provide the necessary background for weighing the benefits against the harms. This review will ultimately inform best practice in the treatment of major depressive disorder. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022315395.


Subject(s)
Depressive Disorder, Major , Humans , Adult , Mirtazapine/adverse effects , Depressive Disorder, Major/drug therapy , Venlafaxine Hydrochloride/adverse effects , Quality of Life , Meta-Analysis as Topic , Review Literature as Topic
2.
J Pathol Inform ; 14: 100194, 2023.
Article in English | MEDLINE | ID: covidwho-2239536

ABSTRACT

Introduction: Telepathology (TP) allows for remote slide review with performance comparable to traditional light microscopy. Use of TP in the intraoperative setting allows for faster turnaround and greater user convenience by obviating the physical presence of the attending pathologist. We sought to perform a practical validation of an intraoperative TP system using the Leica Aperio LV1 scanner in tandem with Zoom teleconferencing software. Methods: A validation was performed in accordance with recommendations from CAP/ASCP, using a retrospectively identified sample of surgical pathology cases with a 1 year washout period. Only cases with frozen-final concordance were included. Validators underwent training in the operation of the instrument and conferencing interface, then reviewed the blinded slide set annotated with clinical information. Validator diagnoses were compared to original diagnoses for concordance. Results: 60 slides were chosen for inclusion. 8 validators completed the slide review, each requiring 2 h. The validation was completed in 2 weeks. Overall concordance was 96.4%. Intraobserver concordance was 97.3%. No major technical hurdles were encountered. Conclusion: Validation of the intraoperative TP system was completed rapidly and with high concordance, comparable to traditional light microscopy. Institutional teleconferencing implementation driven by the COVID pandemic facilitated ease of adoption.

3.
PLoS One ; 17(1): e0260733, 2022.
Article in English | MEDLINE | ID: covidwho-1643240

ABSTRACT

BACKGROUND: COVID-19 is rapidly spreading causing extensive burdens across the world. Effective vaccines to prevent COVID-19 are urgently needed. METHODS AND FINDINGS: Our objective was to assess the effectiveness and safety of COVID-19 vaccines through analyses of all currently available randomized clinical trials. We searched the databases CENTRAL, MEDLINE, Embase, and other sources from inception to June 17, 2021 for randomized clinical trials assessing vaccines for COVID-19. At least two independent reviewers screened studies, extracted data, and assessed risks of bias. We conducted meta-analyses, network meta-analyses, and Trial Sequential Analyses (TSA). Our primary outcomes included all-cause mortality, vaccine efficacy, and serious adverse events. We assessed the certainty of evidence with GRADE. We identified 46 trials; 35 trials randomizing 219 864 participants could be included in our analyses. Our meta-analyses showed that mRNA vaccines (efficacy, 95% [95% confidence interval (CI), 92% to 97%]; 71 514 participants; 3 trials; moderate certainty); inactivated vaccines (efficacy, 61% [95% CI, 52% to 68%]; 48 029 participants; 3 trials; moderate certainty); protein subunit vaccines (efficacy, 77% [95% CI, -5% to 95%]; 17 737 participants; 2 trials; low certainty); and viral vector vaccines (efficacy 68% [95% CI, 61% to 74%]; 71 401 participants; 5 trials; low certainty) prevented COVID-19. Viral vector vaccines decreased mortality (risk ratio, 0.25 [95% CI 0.09 to 0.67]; 67 563 participants; 3 trials, low certainty), but comparable data on inactivated, mRNA, and protein subunit vaccines were imprecise. None of the vaccines showed evidence of a difference on serious adverse events, but observational evidence suggested rare serious adverse events. All the vaccines increased the risk of non-serious adverse events. CONCLUSIONS: The evidence suggests that all the included vaccines are effective in preventing COVID-19. The mRNA vaccines seem most effective in preventing COVID-19, but viral vector vaccines seem most effective in reducing mortality. Further trials and longer follow-up are necessary to provide better insight into the safety profile of these vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/pathogenicity , Vaccine Efficacy/statistics & numerical data , mRNA Vaccines/administration & dosage , COVID-19/mortality , COVID-19/pathology , COVID-19 Vaccines/adverse effects , Humans , Network Meta-Analysis , Randomized Controlled Trials as Topic , SARS-CoV-2/immunology , Survival Analysis , Treatment Outcome , Vaccines, Inactivated , Vaccines, Subunit , mRNA Vaccines/adverse effects
4.
PLoS One ; 16(3): e0248132, 2021.
Article in English | MEDLINE | ID: covidwho-1127793

ABSTRACT

BACKGROUND: COVID-19 is a rapidly spreading disease that has caused extensive burden to individuals, families, countries, and the world. Effective treatments of COVID-19 are urgently needed. This is the second edition of a living systematic review of randomized clinical trials assessing the effects of all treatment interventions for participants in all age groups with COVID-19. METHODS AND FINDINGS: We planned to conduct aggregate data meta-analyses, trial sequential analyses, network meta-analysis, and individual patient data meta-analyses. Our systematic review was based on PRISMA and Cochrane guidelines, and our eight-step procedure for better validation of clinical significance of meta-analysis results. We performed both fixed-effect and random-effects meta-analyses. Primary outcomes were all-cause mortality and serious adverse events. Secondary outcomes were admission to intensive care, mechanical ventilation, renal replacement therapy, quality of life, and non-serious adverse events. According to the number of outcome comparisons, we adjusted our threshold for significance to p = 0.033. We used GRADE to assess the certainty of evidence. We searched relevant databases and websites for published and unpublished trials until November 2, 2020. Two reviewers independently extracted data and assessed trial methodology. We included 82 randomized clinical trials enrolling a total of 40,249 participants. 81 out of 82 trials were at overall high risk of bias. Meta-analyses showed no evidence of a difference between corticosteroids versus control on all-cause mortality (risk ratio [RR] 0.89; 95% confidence interval [CI] 0.79 to 1.00; p = 0.05; I2 = 23.1%; eight trials; very low certainty), on serious adverse events (RR 0.89; 95% CI 0.80 to 0.99; p = 0.04; I2 = 39.1%; eight trials; very low certainty), and on mechanical ventilation (RR 0.86; 95% CI 0.55 to 1.33; p = 0.49; I2 = 55.3%; two trials; very low certainty). The fixed-effect meta-analyses showed indications of beneficial effects. Trial sequential analyses showed that the required information size for all three analyses was not reached. Meta-analysis (RR 0.93; 95% CI 0.82 to 1.07; p = 0.31; I2 = 0%; four trials; moderate certainty) and trial sequential analysis (boundary for futility crossed) showed that we could reject that remdesivir versus control reduced the risk of death by 20%. Meta-analysis (RR 0.82; 95% CI 0.68 to 1.00; p = 0.05; I2 = 38.9%; four trials; very low certainty) and trial sequential analysis (required information size not reached) showed no evidence of difference between remdesivir versus control on serious adverse events. Fixed-effect meta-analysis showed indications of a beneficial effect of remdesivir on serious adverse events. Meta-analysis (RR 0.40; 95% CI 0.19 to 0.87; p = 0.02; I2 = 0%; two trials; very low certainty) showed evidence of a beneficial effect of intravenous immunoglobulin versus control on all-cause mortality, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm or reject realistic intervention effects. Meta-analysis (RR 0.63; 95% CI 0.35 to 1.14; p = 0.12; I2 = 77.4%; five trials; very low certainty) and trial sequential analysis (required information size not reached) showed no evidence of a difference between tocilizumab versus control on serious adverse events. Fixed-effect meta-analysis showed indications of a beneficial effect of tocilizumab on serious adverse events. Meta-analysis (RR 0.70; 95% CI 0.51 to 0.96; p = 0.02; I2 = 0%; three trials; very low certainty) showed evidence of a beneficial effect of tocilizumab versus control on mechanical ventilation, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm of reject realistic intervention effects. Meta-analysis (RR 0.32; 95% CI 0.15 to 0.69; p < 0.00; I2 = 0%; two trials; very low certainty) showed evidence of a beneficial effect of bromhexine versus standard care on non-serious adverse events, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm or reject realistic intervention effects. Meta-analyses and trial sequential analyses (boundary for futility crossed) showed that we could reject that hydroxychloroquine versus control reduced the risk of death and serious adverse events by 20%. Meta-analyses and trial sequential analyses (boundary for futility crossed) showed that we could reject that lopinavir-ritonavir versus control reduced the risk of death, serious adverse events, and mechanical ventilation by 20%. All remaining outcome comparisons showed that we did not have enough information to confirm or reject realistic intervention effects. Nine single trials showed statistically significant results on our outcomes, but were underpowered to confirm or reject realistic intervention effects. Due to lack of data, it was not relevant to perform network meta-analysis or possible to perform individual patient data meta-analyses. CONCLUSIONS: No evidence-based treatment for COVID-19 currently exists. Very low certainty evidence indicates that corticosteroids might reduce the risk of death, serious adverse events, and mechanical ventilation; that remdesivir might reduce the risk of serious adverse events; that intravenous immunoglobin might reduce the risk of death and serious adverse events; that tocilizumab might reduce the risk of serious adverse events and mechanical ventilation; and that bromhexine might reduce the risk of non-serious adverse events. More trials with low risks of bias and random errors are urgently needed. This review will continuously inform best practice in treatment and clinical research of COVID-19. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020178787.


Subject(s)
COVID-19/therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Bromhexine/therapeutic use , COVID-19/mortality , Clinical Trials as Topic , Expectorants/therapeutic use , Humans , Immunoglobulins, Intravenous/therapeutic use , Respiration, Artificial , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Treatment Outcome , COVID-19 Drug Treatment
5.
Syst Rev ; 9(1): 262, 2020 11 20.
Article in English | MEDLINE | ID: covidwho-940035

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) which has rapidly spread worldwide. Several human randomized clinical trials assessing potential vaccines are currently underway. There is an urgent need for a living systematic review that continuously assesses the beneficial and harmful effects of all available vaccines for COVID-19. METHODS/DESIGN: We will conduct a living systematic review based on searches of major medical databases (e.g., MEDLINE, EMBASE, CENTRAL) and clinical trial registries from their inception onwards to identify relevant randomized clinical trials. We will update the literature search once a week to continuously assess if new evidence is available. Two review authors will independently extract data and conduct risk of bias assessments. We will include randomized clinical trials comparing any vaccine aiming to prevent COVID-19 (including but not limited to messenger RNA; DNA; non-replicating viral vector; replicating viral vector; inactivated virus; protein subunit; dendritic cell; other vaccines) with any comparator (placebo; "active placebo;" no intervention; standard care; an "active" intervention; another vaccine for COVID-19) for participants in all age groups. Primary outcomes will be all-cause mortality; a diagnosis of COVID-19; and serious adverse events. Secondary outcomes will be quality of life and non-serious adverse events. The living systematic review will include aggregate data meta-analyses, trial sequential analyses, network meta-analyses, and individual patient data meta-analyses. Within-study bias will be assessed using Cochrane risk of bias tool. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) and Confidence in Network Meta-Analysis (CINeMA) approaches will be used to assess certainty of evidence. Observational studies describing harms identified during the search for trials will also be included and described and analyzed separately. DISCUSSION: COVID-19 has become a pandemic with substantial mortality. A living systematic review assessing the beneficial and harmful effects of different vaccines is urgently needed. This living systematic review will regularly inform best practice in vaccine prevention and clinical research of this highly prevalent disease. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020196492.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , COVID-19/mortality , COVID-19/virology , COVID-19 Vaccines/adverse effects , Humans , Meta-Analysis as Topic , Network Meta-Analysis , Pandemics , Quality of Life , Research Design , SARS-CoV-2 , Systematic Reviews as Topic , Treatment Outcome
6.
PLoS Med ; 17(9): e1003293, 2020 09.
Article in English | MEDLINE | ID: covidwho-771816

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a rapidly spreading disease that has caused extensive burden to individuals, families, countries, and the world. Effective treatments of COVID-19 are urgently needed. METHODS AND FINDINGS: This is the first edition of a living systematic review of randomized clinical trials comparing the effects of all treatment interventions for participants in all age groups with COVID-19. We planned to conduct aggregate data meta-analyses, trial sequential analyses, network meta-analysis, and individual patient data meta-analyses. Our systematic review is based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and Cochrane guidelines, and our 8-step procedure for better validation of clinical significance of meta-analysis results. We performed both fixed-effect and random-effects meta-analyses. Primary outcomes were all-cause mortality and serious adverse events. Secondary outcomes were admission to intensive care, mechanical ventilation, renal replacement therapy, quality of life, and nonserious adverse events. We used Grading of Recommendations Assessment, Development and Evaluation (GRADE) to assess the certainty of evidence. We searched relevant databases and websites for published and unpublished trials until August 7, 2020. Two reviewers independently extracted data and assessed trial methodology. We included 33 randomized clinical trials enrolling a total of 13,312 participants. All trials were at overall high risk of bias. We identified one trial randomizing 6,425 participants to dexamethasone versus standard care. This trial showed evidence of a beneficial effect of dexamethasone on all-cause mortality (rate ratio 0.83; 95% confidence interval [CI] 0.75-0.93; p < 0.001; low certainty) and on mechanical ventilation (risk ratio [RR] 0.77; 95% CI 0.62-0.95; p = 0.021; low certainty). It was possible to perform meta-analysis of 10 comparisons. Meta-analysis showed no evidence of a difference between remdesivir versus placebo on all-cause mortality (RR 0.74; 95% CI 0.40-1.37; p = 0.34, I2 = 58%; 2 trials; very low certainty) or nonserious adverse events (RR 0.94; 95% CI 0.80-1.11; p = 0.48, I2 = 29%; 2 trials; low certainty). Meta-analysis showed evidence of a beneficial effect of remdesivir versus placebo on serious adverse events (RR 0.77; 95% CI 0.63-0.94; p = 0.009, I2 = 0%; 2 trials; very low certainty) mainly driven by respiratory failure in one trial. Meta-analyses and trial sequential analyses showed that we could exclude the possibility that hydroxychloroquine versus standard care reduced the risk of all-cause mortality (RR 1.07; 95% CI 0.97-1.19; p = 0.17; I2 = 0%; 7 trials; low certainty) and serious adverse events (RR 1.07; 95% CI 0.96-1.18; p = 0.21; I2 = 0%; 7 trials; low certainty) by 20% or more, and meta-analysis showed evidence of a harmful effect on nonserious adverse events (RR 2.40; 95% CI 2.01-2.87; p < 0.00001; I2 = 90%; 6 trials; very low certainty). Meta-analysis showed no evidence of a difference between lopinavir-ritonavir versus standard care on serious adverse events (RR 0.64; 95% CI 0.39-1.04; p = 0.07, I2 = 0%; 2 trials; very low certainty) or nonserious adverse events (RR 1.14; 95% CI 0.85-1.53; p = 0.38, I2 = 75%; 2 trials; very low certainty). Meta-analysis showed no evidence of a difference between convalescent plasma versus standard care on all-cause mortality (RR 0.60; 95% CI 0.33-1.10; p = 0.10, I2 = 0%; 2 trials; very low certainty). Five single trials showed statistically significant results but were underpowered to confirm or reject realistic intervention effects. None of the remaining trials showed evidence of a difference on our predefined outcomes. Because of the lack of relevant data, it was not possible to perform other meta-analyses, network meta-analysis, or individual patient data meta-analyses. The main limitation of this living review is the paucity of data currently available. Furthermore, the included trials were all at risks of systematic errors and random errors. CONCLUSIONS: Our results show that dexamethasone and remdesivir might be beneficial for COVID-19 patients, but the certainty of the evidence was low to very low, so more trials are needed. We can exclude the possibility of hydroxychloroquine versus standard care reducing the risk of death and serious adverse events by 20% or more. Otherwise, no evidence-based treatment for COVID-19 currently exists. This review will continuously inform best practice in treatment and clinical research of COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Critical Care/methods , Disease Management , Pandemics , Pneumonia, Viral/therapy , Quality of Life , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/psychology , Hospitalization/trends , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/psychology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL